Exercise 54

Find equations of the tangent lines to the curve

$$
y=\frac{x-1}{x+1}
$$

that are parallel to the line $x-2 y=2$.

Solution

Solve the equation of this line for y.

$$
y=\frac{1}{2} x-1
$$

The line's slope is $1 / 2$. The aim is to find the values of x where the given function's slope is $1 / 2$. Start by taking the derivative.

$$
y^{\prime}=\frac{d}{d x}\left(\frac{x-1}{x+1}\right)=\frac{2}{(x+1)^{2}}
$$

Then set it equal to $1 / 2$ and solve the equation for x.

$$
\frac{2}{(x+1)^{2}}=\frac{1}{2} \quad \rightarrow \quad x=\{-3,1\}
$$

Again, these values of x are where the slope on the given curve is $1 / 2$. Plug these values of x into the given function.

$$
\begin{gathered}
y(-3)=\frac{-3-1}{-3+1}=2 \\
y(1)=\frac{1-1}{1+1}=0
\end{gathered}
$$

The points that the (two) tangent lines touch the curve are then

$$
(-3,2) \quad \text { and }(1,0) .
$$

Therefore, the equations of the tangent lines are

$$
\begin{aligned}
& y-2=\frac{1}{2}(x+3) \\
& y-0=\frac{1}{2}(x-1) .
\end{aligned}
$$

These lines are plotted below with the given function.

